VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CSE) III Year I-Semester Main \& Backlog Examinations, December-2017

Automata, Languages and Computation
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10 $\times 2=20$ Marks)

1. Write a regular expression for the language over the alphabet $\sum=\{0,1\}$. The set of all strings in which every pair of adjacent 0 's appears before any pair of adjacent 1's.
2. Construct a DFA accepting the set of all strings beginning with 101 , over the alphabet $\{0,1\}$.
3. If a language is satisfying Pumping lemma of regular sets. Can we conclude that the given language is regular? Justify.
4. Can we have more than one minimized Deterministic Finite Automata for a given language? Justify with an example.
5. Distinguish between DPDA and NDPDA.
6. Simplify the following grammar.
$\mathrm{S}>\mathrm{AB}$
$\mathrm{A}>\mathrm{a}$
$\mathrm{B}>\mathrm{C}$
$\mathrm{B}->\mathrm{b}$
$\mathrm{C}->\mathrm{D}$
$\mathrm{D}->\mathrm{E}$
7. What is multitape Turing Machine?
8. What is universal Turing Machine?
9. Differentiate classes P and NP.
10. Mention any two undecidable problems.

$$
\text { Part-B }(5 \times 10=50 \mathrm{Marks})
$$

11. a) Convert the following NFA to DFA.

	0	1
$->p$	$\{p, q\}$	$\{p\}$
q	-	$\{r\}$
${ }^{*} r$	$\{p, r\}$	$\{q\}$

b) Consider the following NFA over $\sum=\{a, b\}$,
i) What is the shortest string not accepted by this NFA
ii) Name the states and Compute the epsilon closure of each state.

12. a) Below Table-1 is the transition table of a DFA. Find the distinguishable states by filling out the table-2 above. However, place X's only for those pairs that are distinguishable by the basis step. For those discovered to be distinguishable during the induction, place numbers $1,2, \ldots$ indicating the order in which you discovered these pairs to be distinguishable. Note that many different orders are correct. Also note: cells with \# are not to be filled in. Which sets of states are mutually equivalent? Draw the transition table for the minimum-state equivalent DFA.

	0	1
$\rightarrow A$	E	B
B	D	A
C	G	A
D	G	E
E	A	D
F	B	E
G	B	A

	G	F	E	D	C	B
A						
B						$\#$
C					$\#$	$\#$
D				$\#$	$\#$	$\#$
E			$\#$	$\#$	$\#$	$\#$
F			$\#$	$\#$	$\#$	$\#$

b) Show that the two grammars are equivalent.
$S \rightarrow a b A B \mid b a$
$A \rightarrow a a a$

$B \rightarrow a A \mid b b$$\quad$ and \quad| $S \rightarrow a b A a A\|a b A b b\| b a$ |
| :--- |
| $A \rightarrow a a a$ |

13. a) Design a PDA to recognize the set of balanced strings of parentheses over the alphabet $\{()$,$\} .$
b) Convert the following CFG productions to CNF.
$\mathrm{S}->\mathrm{bA} \mid \mathrm{aB}$
A->bAA|aS|a
B-> bSbb $\mid \mathrm{aBB}$
14. a) Give the formal definition of Turing machine.
b) Design Turing machine to recognize the language $\mathrm{L}:\left\{\mathrm{wcw}^{T} \mid \mathrm{w}\right.$ is in $\left.(0+1)^{*}\right\}$
15. a) Consider the following instance of Post's Correspondence Problem (PCP) with two lists $A=\{1,10111,10\}$ and $B=\{111,10,0\}$. Find whether the given instances of PCP has solution or not?
b) Briefly explain satisfiability problem.
16. a) Give ε-NFA for $a^{*} b+b^{*} c+c^{*} a$
b) Give the CFG for the set of palindromes over $\{0,1\}$. Draw the parse tree for deriving the string 01110.
17. Answer any two of the following:
a) Show that the following is not Context Free language. $\left\{\mathrm{a}^{\left.\mathrm{i} b^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid i<j<\mathrm{j}\right\}}\right.$
b) Find a Greibach Normal form grammar equivalent to the following CFG:
$S \rightarrow A A \mid 0$
$A \rightarrow S S \mid 1$
c) Explain about recursive and recursively enumerable languages.
